Corrosion of disposal canisters

Fraser King
Integrity Corrosion Consulting Ltd, Canada

Consultant to Nagra

Outline

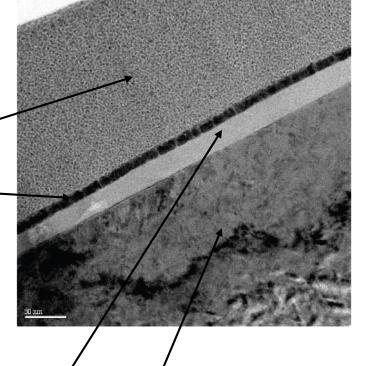
- Forms of corrosion
 - Types of corrosion
 - Control by design
- Nature of the disposal environment
 - Parameters of interest
 - Evolution of the disposal environment
- Overview of corrosion behaviour of alternative canister materials
 - Copper
 - Steel/iron
 - Titanium alloys
 - Nickel alloys
- Lifetime prediction
 - General approaches
 - Typical lifetimes for each class of material

FORMS OF CORROSION

Forms of corrosion

- Introduction
 - Under disposal conditions, corrosion is primarily an electrochemical process requiring the presence of liquid water
 - The forms of corrosion that affect the canister depend on:
 - Chemical environment at the canister surface
 - Temperature
 - Applied and residual stress
 - Because the nature of the environmental conditions changes with time, so too will the corrosion behaviour of the canister
 - Not all forms of corrosion will affect the canister at all times
 - Important consideration for lifetime prediction

Corrosion processes that MAY occur (1/4)


Pt

- General (or uniform) corrosion
 - Results in loss of wall thickness
 - Requires oxidant
 - O₂, oxidizing radiolysis products, H₂O (except Cu)
 - Rate affected by:
 - Temperature, rate of mass transport,
 pH, (salinity)
 Pd-Au
 - Classes of alloy
 - "Active" materials (Cu, C-steel)
 - No or partially protective corrosion product layer
 - Steel/iron corrosion rate of the order of μm/yr (under anaerobic conditions)
 - Copper corrosion rate ~0.001 µm/yr (anaerobic, sulphide)
 - "Passive" materials (Ni, Ti alloys)
 - Highly protective, passive film
 - Rate of the order of nm/yr (under

Oxide film (~30 nm)

Metal

Transmission electron micrograph of a passive film on Alloy 22: 9 months immersion in brine at 140°C

nagra.

repository conditions)

Corrosion processes that MAY occur (2/4)

- Localised corrosion
 - Pitting
 - Crevice corrosion
- Primarily an issue for passive materials
 - Results in localised penetration
 - Requires oxidising conditions and an aggressive solution species (typically Cl⁻ ions)
 - Separate initiation and propagation steps
 - Probability of initiation increases with increasing T, electrochemical (corrosion) potential, [Cl-] and decreasing pH
 - Propagation rate of the order of 10-100's μ m/yr, but many alloys show a tendency to "stifle" (i.e., alloy re-passivates)
- Active materials undergo a form of surface roughening rather than deep localised penetrations

Corrosion processes that MAY occur (3/4)

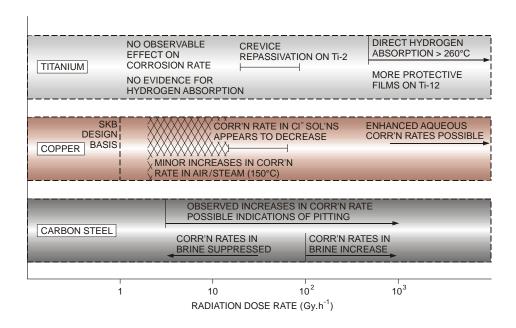
- Environmentally assisted cracking
 - Stress corrosion cracking (SCC)
 - Hydrogen-related degradation

SCC

- Requires tensile stress and specific corrosive species
- Results in crack growth perpendicular to maximum tensile stress
 - Penetration rates up to mm/yr
- Most candidate canister materials susceptible in some environments (with exception of Ti alloys)
 - Question is whether that environment will be present
- Hydrogen-related degradation
 - Due to absorption of H produced during anaerobic corrosion
 - May lead to loss of ductility, reduction in toughness, blister formation, cracking, formation of brittle hydride phases
 - Only Ti alloys and carbon steel potentially affected

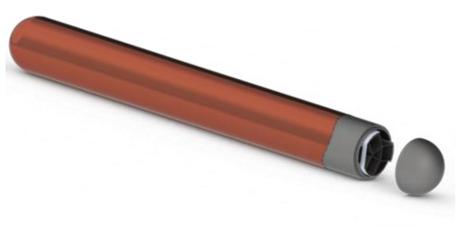
Corrosion processes that MAY occur (4/4)

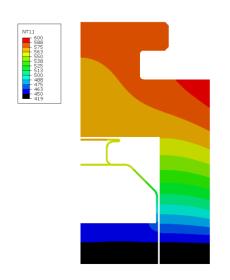
- Microbiologically influenced corrosion (MIC)
 - Microbial activity may result in:
 - Generation of corrosive metabolic by-products
 - Sulphide, organic acids, ammonia, nitrite
 - Formation of occluded localised micro-environments (biofilm)
 - In general, repository environment is inhospitable for microbial activity
 - Elevated T, high pH (concrete), limited nutrients (organic C), limited space/swelling pressure/low water activity (bentonite), radiation fields, saline ground water
 - Microbial activity suppressed by either highly compacted bentonite (low water activity/swelling pressure) or cementitious backfill (alkaline pH)
 - If near-field microbial activity is suppressed by buffer/backfill, then only concern is transport of metabolic by-products produced some distance away from canister
 - No biofilm on canister surface


Corrosion processes that are UNLIKELY to occur

- Galvanic corrosion
 - Long-range galvanic coupling between canister and other metallic components in repository is unlikely
 - May occur for dissimilar in dual-wall canisters <u>after the outer</u> corrosion barrier is breached
 - Effect is minor in absence of oxygen
 - Micro-galvanic effects associated with welds may be possible
- Corrosion related to cyclic mechanical loading
 - For example, corrosion fatigue
 - Canisters are not subject to cyclic loads
- High-temperature oxidation
 - Maximum canister surface temperatures of <130°C too low for extensive oxidation
 - Extrapolation from rate laws determined at high temperatures suggest only nm of oxidation possible

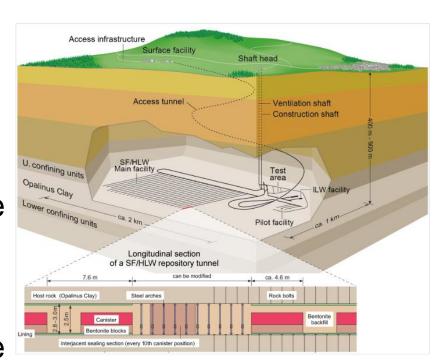
Corrosion processes that are UNLIKELY to occur

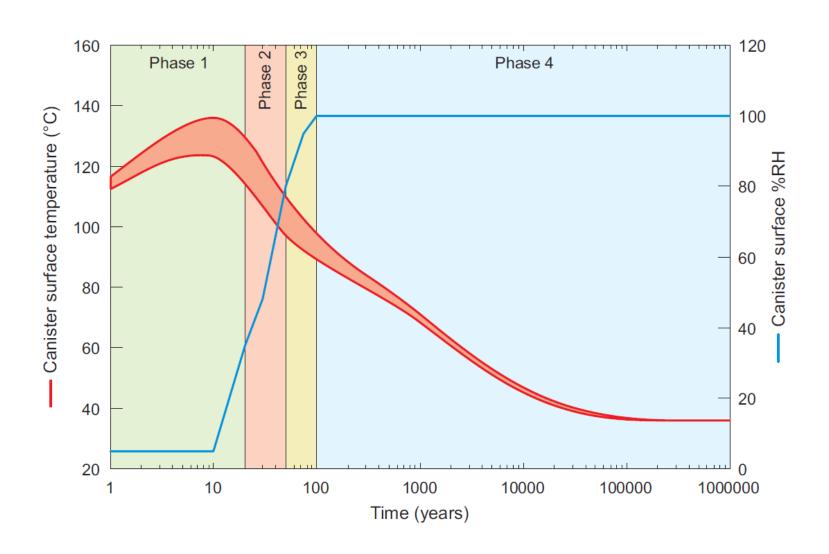

- Radiation effects
 - Neutron fluxes too low to cause embrittlement (of steel)
 - Radiation-enhanced corrosion thresholds established
 - For thick-walled canister design, external γ-radiation field below threshold for radiation effects



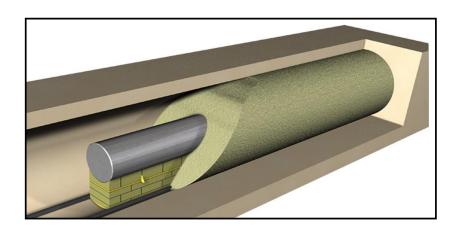
Corrosion control through design of canister

- Residual stress
 - Weld and canister design
- Radiation
 - Age of fuel
 - Design/thickness of canister wall
- SCC/creep behaviour
 - Copper-coated design
 - Proper alloy selection




Corrosion control through design of repository environment

- Control over temperature
 - Age of fuel
 - Canister spacing/waste loading
- Limited mass transport
 - Highly compacted bentonite
- Suppression of microbial activity
 - Highly compacted bentonite
 - Cementitious backfill


NATURE OF THE DISPOSAL ENVIRONMENT

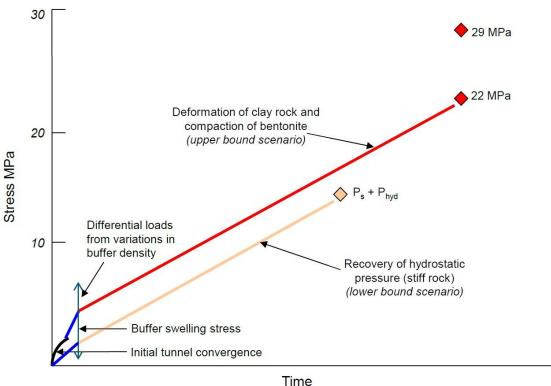
Temperature and degree of saturation

The amount of oxidant is limited

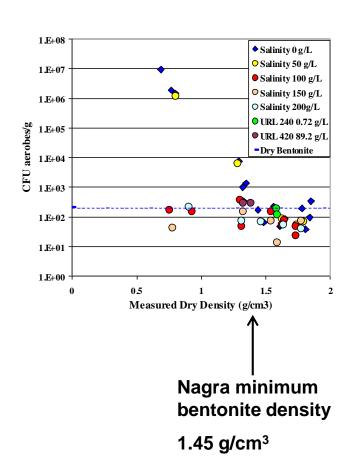
Oxygen

- Approx 140 mol O₂ per canister
 - Equivalent to ~110 μm as Fe(II)
 - Much of this O₂ will be consumed by processes other than canister corrosion
- Recent evidence from FE experiment at Mont Terri suggests this will occur over period of weeks-months

- The amount of available oxidant is limited
 - Oxygen
 - Equivalent to 10's-100's
 μm general corrosion
 - Also results in limited period of localized corrosion/SCC
 - Water (not oxidant for Cu)
 - Unlimited supply(?), but tends to support general corrosion only
 - Radiolysis products
 - Insignificant for the typical thick-walled canister designs

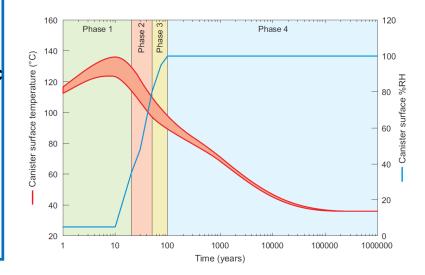

Porewater composition and evolution

			Maximum expected variation	
	Opalinus Clay reference water	Bentonite ¹ reference water	Bentonite ¹ low pH	Bentonite ¹ high pH
pН	7.24	7.25	6.90	7.89
log pCO ₂ [bar]	-2.2	-2.2	-1.5	-3.5
Ionic strength [eq/L]	2.28×10^{-1}	3.23×10^{-1}	3.65×10^{-1}	2.63×10^{-1}
CO ₃	2.70×10^{-3}	2.83×10^{-3}	6.99×10^{-3}	5.86×10^{-4}
Na	1.69×10^{-1}	2.74×10^{-1}	2.91×10^{-1}	2.49×10^{-1}
Ca	1.05×10^{-2}	1.32×10^{-2}	1.33 × 10 ⁻²	1.34×10^{-2}
Mg	7.48×10^{-3}	7.64×10^{-3}	8.91×10^{-3}	6.15×10^{-3}
K	5.65×10^{-3}	1.55×10^{-3}	1.67×10^{-3}	1.38×10^{-3}
SO ₄	2.40×10^{-2}	6.16×10^{-2}	6.39×10^{-2}	5.59×10^{-2}
Cl	1.60×10^{-1}	1.66×10^{-1}	2.06×10^{-1}	8.61×10^{-2}
Fe	4.33×10^{-5}	4.33×10^{-5}	7.74×10^{-5}	8.00×10^{-6}
Al	2.17×10^{-8}	1.92×10^{-8}	1.53×10^{-8}	7.55×10^{-8}
Si	1.78×10^{-4}	1.80×10^{-4}	1.80×10^{-4}	1.84×10^{-4}


Mechanical loading

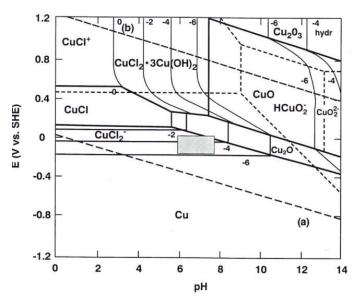
 Combination of external loading and residual stress from canister manufacture

Microbial activity

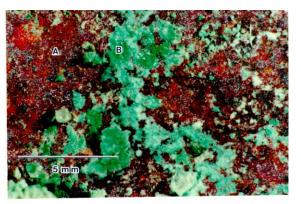

- Opalinus Clay contains microbes that are likely to be viable but, probably as a result of space (average pore size 10-20 nm) and water restriction, only a very small, metabolically inactive population (ongoing studies at Mont Terri, with similar results at Andra's Bure URL)
- Microbial activity in compacted bentonite is suppressed by a combination of low water activity and/or high swelling pressure
- Culturability is significant only in low density bentonite – at a dry density above 1.4 to 1.5 Mg m⁻³ (swelling pressure of >2MPa) microbes do not appear to be viable

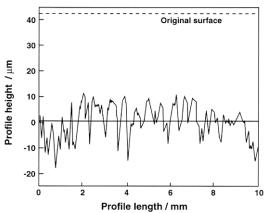
Evolution of repository environment

- Repository environment evolves over time
- Evolution is from "bad" to "good" in terms of the effect on corrosion
 - Initial warm/oxidizing to eventual cool/anoxic
 - Long-term conditions can be expected to remain relatively benign indefinitely
 - Depending upon canister lifetime, >99% of service life corresponds to relatively benign cool/anoxic period


- Implications for predicting long-term corrosion behaviour
 - Most aggressive, and perhaps the most difficult to predict, forms of corrosion occur during the first few years
 - Localized corrosion, SCC
 - General corrosion processes only under cool/anoxic conditions
 - Therefore, the problem of predicting corrosion behaviour over periods of 1000's-10,000's years is greatly simplified

CORROSION BEHAVIOUR OF CANDIDATE CANISTER MATERIALS


Copper

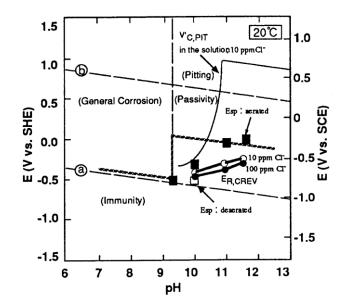

94-0304.b5

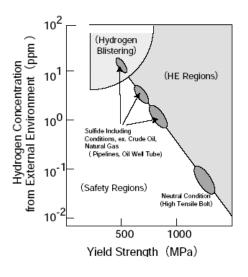
- Tendency to corrode uniformly with surface roughening but no localized corrosion
- Susceptible to MIC if microbes are active
- Susceptible to SCC in a few specific environments, and then only under aerobic/oxidizing conditions

- Effectively thermodynamically stable in water and Cl⁻ solutions at neutral-alkaline pH
- Will corrode with the evolution of H₂ in the presence of sulphide

Advantages and disadvantages: Copper

Advantages:


- Possibility of indefinite containment (in the correct environment)
- Excellent corrosion behaviour, especially in Cl⁻ dominated environments
- Minimal impact on other barriers (except for steel/iron insert)
- Over 30 years of international experience
- Robust lifetime predictions
- Natural and archaeological analogues


Disadvantages:

- More complex design and fabrication (Swedish-design Cu shell-cast iron design)
 - Requires internal support
 - Welding and inspection of thick sections
- Copper coating technology under development would largely resolve these issues

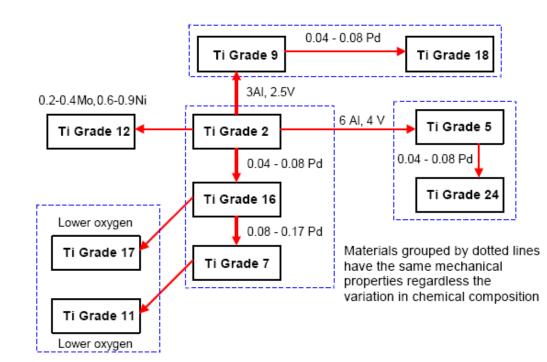
Carbon steel

- Thermodynamically unstable in water
- Corrosion rate decreases with time
- Passivates at pH greater than ~pH 9
 - Active in bentonite buffer
- Lifetime predictions based on massbalance (aerobic phase) arguments and empirical data, supported by (natural and) archaeological analogues
- Susceptible to MIC if microbes are active
- C-steels are susceptible to H effects
 - Careful material specification
 - Care in design and sealing
- C-steels are susceptible to SCC
 - Not a major issue under repository conditions

Advantages and disadvantages: Carbon Steel

Advantages:

- Long canister lifetimes possible
- Simple, single-shell canister design
- Good corrosion behaviour under active (bentonite) conditions
- Robust lifetime predictions supported by archaeological analogues
- Over 25 years international nuclear waste management experience
 - Much longer general industrial experience


Disadvantages:

 Potential impacts of H₂ and Fe(II) on bentonite and tight host rock

Titanium Alloys

- Ti alloys can be susceptible to:
 - General corrosion
 - Crevice corrosion
 - Hydrogen-induced cracking
- Extremely stable TiO₂ passive film
- Considered to be immune to MIC
- Immune to pitting under repository conditions
- Since rapid H pick up is associated with crevice conditions, advantage to using a crevice-corrosion resistant grade

Advantages and disadvantages: Titanium alloys

Advantages:

- Very long canister lifetimes with crevice-corrosion resistant grades
- Minimal impact on other barriers


Disadvantages:

- Need to make long-term prediction for passive material
- Requires internal support
 - Material too costly to produce single-shell canister

Nickel Alloys

- Wide range of alloys with properties to suit a wide range of conditions
 - All alloys considered as canister materials have come from Ni-Cr-Mo or Ni-Cr-Mo-Fe groups
 - Hastelloys, especially, offer excellent corrosion resistance
 - Considered for some of the harshest repository environments
 - E.g., highly aggressive brine inclusions in evaporites
- Corrosion processes of concern:
 - General corrosion
 - Localized corrosion (crevice corrosion, pitting)
 - Sensitivity to radiation at high dose rates
 - Typically not an issue at dose rates expected for canister

 Key is to select an alloy of sufficient resistance to localized corrosion and/or tendency to stifle that canister remains unperforated during initial warm, aerobic phase

Advantages and disadvantages: Nickel alloys

Advantages:

- Potential for very long-lived containment with proper alloy selection
- Corrosion resistance can be tailored to specific environmental conditions
- Minimal impact on other barriers

Disadvantages:

- Need to make long-term prediction for passive material
- Requires internal support

LIFETIME PREDICTION

Approach to modelling corrosion processes

- General corrosion
 - Various approaches
 - Detailed mechanistically based numerical modelling
 - Mass-balance (based on amount of O₂) and/or mass-transport (based on flux of HS⁻) approaches
- Localised corrosion
 - Various approaches
 - Pitting factor (ratio of maximum to mean penetration) based on empirical data
 - Extreme-value statistical analysis of empirical data
 - Comparison of E_{CORR} to critical potential for pitting
 - Mechanistic arguments based on maximum depth of surface roughening
- SCC
 - Excluded from consideration based on mechanistic evidence
- MIC
 - Contribution to flux of HS- during anaerobic phase
 - Other effects of microbes excluded based on mechanistic evidence

Lifetime prediction for copper canisters

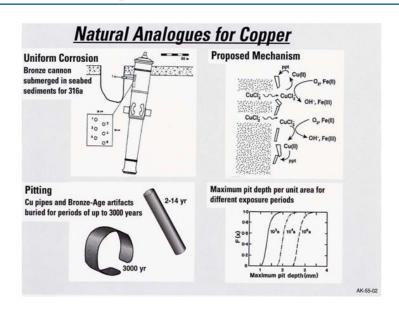
- General corrosion
 - Due to O₂/Cu(II)
 - Both detailed reactive-transport modelling and simpler mass-balance calculations indicate maximum depth of corrosion <100 μm
 - Due to HS-
 - Limited by mass transport of HS⁻ from pyrite dissolution and/or pore water sulphide
 - SRB predicted to be minor contributor to total [HS-]
 - Maximum attack 0.9 mm in 100,000 years (Johnson and King 2002)
- Localized corrosion
 - "Best estimate" <100 μm due to under-deposit corrosion
- Predicted lifetime for 5-mm thick Cu shell is >100,000 years

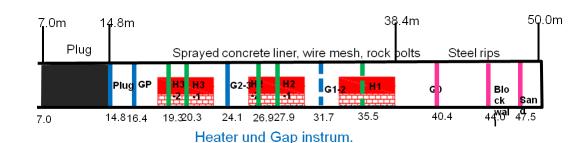
Lifetime prediction for carbon steel canisters

- General corrosion
 - Based on mass-balance arguments for aerobic period
 - Maximum penetration <0.1 mm
 - Long-term anaerobic corrosion
 - Assumed rate 2 μm/year
 - Equivalent to 20 mm penetration in 10,000 years
 - Additional 0.2 mm possible due to HS⁻ from pyrite in Opalinus clay (mass-transport limited)
- Localized corrosion during aerobic phase
 - 1 mm based on conservative "pitting factor" of 10
 - Ratio of maxium pit depth to depth of general corrosion
- Total corrosion depth in 10,000 years is ~21 mm of the proposed 140 mm wall thickness

Lifetime prediction for nickel alloy canisters

- General corrosion
 - For Ni-Cr-Mo and Ni-Cr-Mo-Fe alloys, rate of general corrosion under repository conditions is of the order of 1-10 nm/yr
- Localised corrosion
 - Increasing resistance to pitting and crevice corrosion with increasing Cr, Mo, W, Co content
 - Possible to specify a grade of material that would be immune to localised corrosion under repository conditions
 - Alternatively, specify a grade that is susceptible but for which propagation is limited
- Environmentally assisted cracking/MIC
 - Ni alloys are broadly immune to EAC under repository conditions and highly alloyed materials exhibit great resistance to MIC
- Lifetime prediction
 - >10,000 yrs for wall thicknesses of 5-10 mm


Lifetime prediction for titanium canisters


- General corrosion
 - Rate of general corrosion under repository conditions is of the order of 1-10 nm/yr due to highly protective TiO₂ passive film
- Localised corrosion
 - Pitting potential for Ti alloys >2 V under repository conditions and are therefore immune
 - Pd-containing alloys (such as Grades 7 and 16) are essentially immune to crevice corrosion under repository conditions
 - Less-resistant alloys (such as CP Grade 2 and Ni-Mo alloy Grade 12) may be susceptible to crevice corrosion, but propagation limited by availability of O₂
- Environmentally assisted cracking/MIC
 - Ti alloys are broadly immune to EAC under repository conditions and immune to MIC
- Lifetime prediction
 - >10,000 yrs for wall thicknesses of 5-10 mm

Confidence building in lifetime prediction

- The requirement to be able to predict canister integrity over periods of 100's to 1000's of years, and to be able to justify those predictions, is a significant technological challenge
- Confidence building
 - Natural and man-made analogues
 - Large-scale in situ experiments
 - Alternative models
 - Mechanistic basis and understanding

Summary

- Various alloys have been considered as candidate HLW/SF canisters
 - Active alloys (copper, carbon steel)
 - General corrosion
 - Minor (localised) surface roughening
 - SCC/H effects unlikely under repository conditions
 - MIC can be minimised through use of compacted bentonite
 - Passive materials (nickel, titanium alloys)
 - Very low rates of general corrosion
 - Certain alloys immune to localised corrosion, others may be susceptible but propagation likely to be limited
 - Ni alloys immune to SCC/H, Ti alloys susceptible to H effects
 - Ti immune to MIC, Ni alloys highly resistant
- 10,000 canister lifetime achievable with a range of different alloy options

