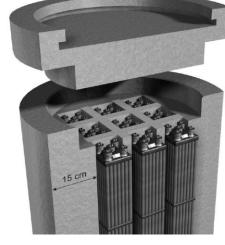
Ceramic Material Solutions for Nuclear Waste Disposal Canisters

Stuart Holdsworth

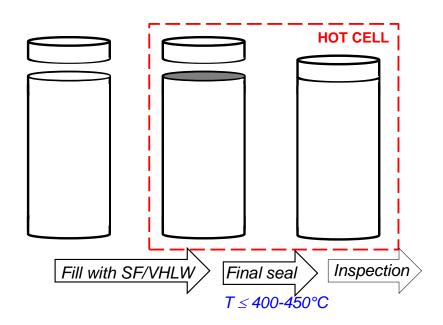
High Temperature Integrity
Mechanical Integrity for Energy Systems

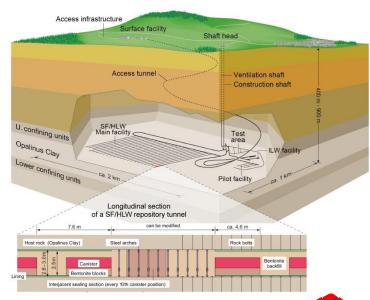

Ceramic solutions for nuclear waste disposal canisters ENSI presentation (5.Nov-2015)

- Background and Introduction
- Mechanical integrity
- Susceptibility to environmental damage and impact on geological barrier
- Large product-form fabrication
- Container sealing solutions
- Coatings
- Concluding remarks

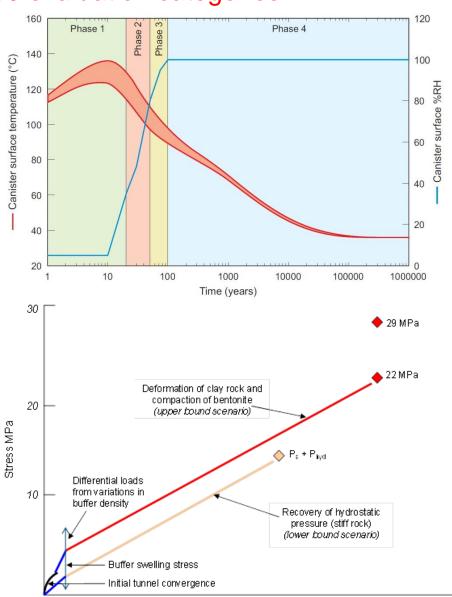
NAGRA canister review: Canister dimensions

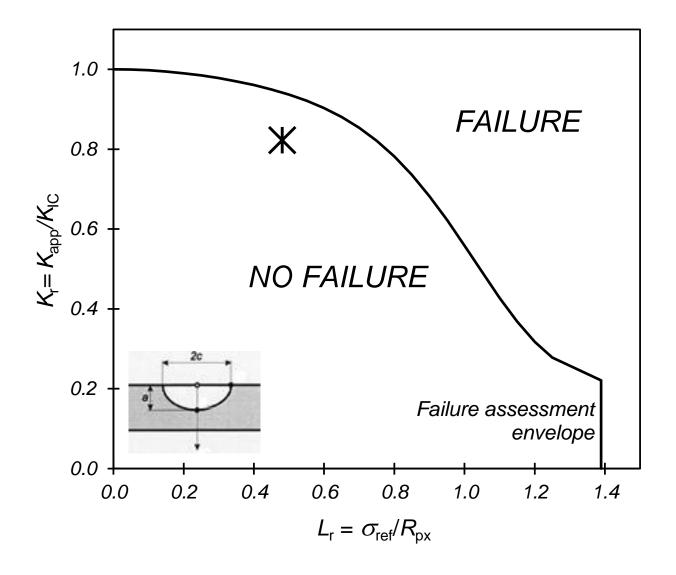
- Disposal of spent fuel (SF)
 - > 5m long x 760mm ID, with $t \le \sim 150$ mm (depending on material solution)
 - > Alternative configurations possible, but length is fixed
- Disposal of vitrified high level waste (HLW)
 - > 3m(1.5m) long x 450mm ID, with $t \ge 50mm$ (depending on material solution)
 - > HLW cylinders are typically 1.34m long x 430mm diam.

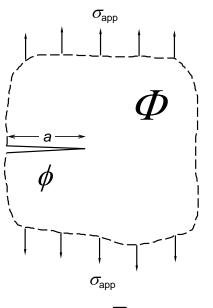




Ceramic solutions for nuclear waste disposal canisters NAGRA canister review: Canister logistics

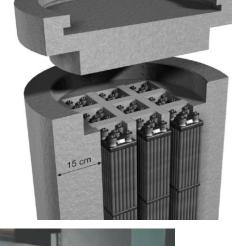

- Disposal of spent fuel (SF)
 - > 5m long x 760mm ID, with t ≤ ~150mm (depending on material solution)
 - Alternative configurations possible, but length is fixed
- Disposal of vitrified high level waste (HLW)
 - > 3m(1.5m) long x 450m ID, with $t \ge 50mm$ (depending on material solution)
 - > HLW cylinders are typically 1.34m long x 430mm diam.


NAGRA canister review: NAB-14-90 evaluation categories


- Mechanical integrity
 - ➤ Load cases: handling, disposal
- Environmental damage
 - 'Short-time' aerobic (dry) phase; 'Long-time' anaerobic (moist) phase
 - General corrosion, localised corrosion, microbial induced corrosion, stress corrosion and hydrogen induced cracking
- Impact on geological barrier
- Robustness of lifetime prediction
 - Very long time (>10,000y) corrosion damage predictions
- Fabrication
 - Canister manufacture, final sealing, inspection
- Costs
 - > Development costs, unit costs

Time

Defect integrity: Failure assessment diagram



$$K_{\text{app}} = \sigma_{\text{app}}.\sqrt{a}.Y(a,\phi,\Phi)$$

NAGRA canister review: Candidate material solutions

- Carbon steel (with corrosion allowance)
- Copper shell with internal cast iron support
- Copper (or nickel alloy) coating of carbon steel
- Titanium or nickel alloy shell with carbon steel support
- Ceramics

Ceramic solutions for nuclear waste disposal canisters Candidate ceramics

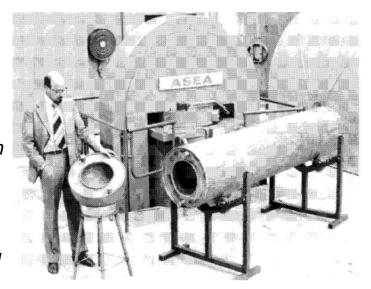
	SiO ₂ - MgO	Al ₂ O ₃ (96-99.1%)	Al ₂ O ₃ (99.8%)	ZrO ₂ - MgO	ZrO_2 - Y_2O_3	TiO ₂	SiC	Si_3N_4 - Y_2O_3
Gross density (g/cm ³)	2.2-2.8	3.80-3.82	3.96	5.74	6.08	4.26	3.10	3.21
Flexural strength (MPa)	110-180	280-350	500	500	1000	69-103	350	750
Compressive strength (MPa)		2000	4000	1600	2200		2000	3000
Fracture toughness (MPa√m)		4.0	4.3	8.1	10.0	2.5	3.8	7.0
Elastic modulus, dynamic (GPa)	70-120	270-340	380	210	210	283	350	305
Vickers hardness (GPa)		14-17	18	13	13		25	16
Thermal conductivity (W/mK)	2-5	24-28	30	3	2.5	8.8	100	21
Thermal expansion, CTE (10 ⁻⁶ /°C)	4-7	7.1-7.3	7.5	10.2	10.4	9.4	3.5	3.2
Maximum operating temperature (°C)	1000	1400	1500	850	1000		1800	1600
Melting point (°C)		2015		2700		1840	2700	2700

Previous experience

Swedish evaluation programme

- Al₂O₃ fabricated by sintering under isostatic pressure
- ➤ Sealing by diffusion bonding with TiO₂ powder
- Some environmental damage evaluation
- Programme terminated in ~1980 due to progress with copper canister development

German evaluation programme

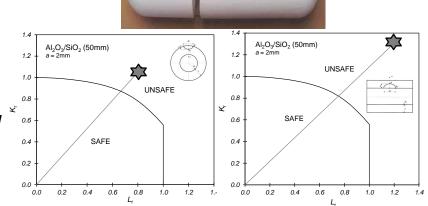

- Focus on Al₂O₃
- Pre-stressed mechanical solution adopted for sealing
- Significant environmental damage testing
- No indication of programme continuing after 1990s

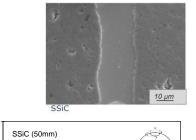
BNL/Nucon (US) evaluation programme

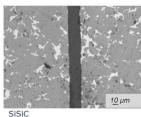
- ➤ MgAl₂O₄ spinel (one of Yucca Mountain solutions)
- Sealing by diffusion bonding with local microwave heating
- No environmental damage test results identified
- Evaluation programme no longer continuing

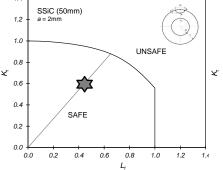
NAGRA feasibility studies

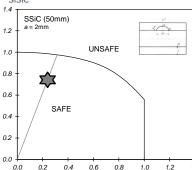
- > ANDRA evaluation of Al₂O₃-SiO₂ solutions (P72)
- EMPA first review [NAB 12-45]
- > EMPA second review (as part of [NAB 14-90])
 - Greater focus on SiC

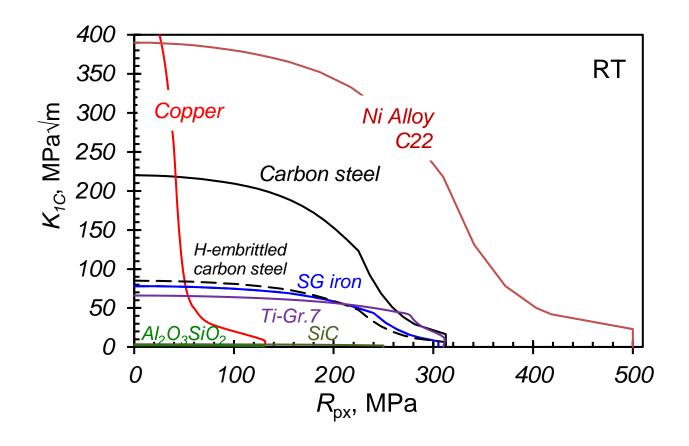

Al₂O₃-SiO₂ and SiC solutions

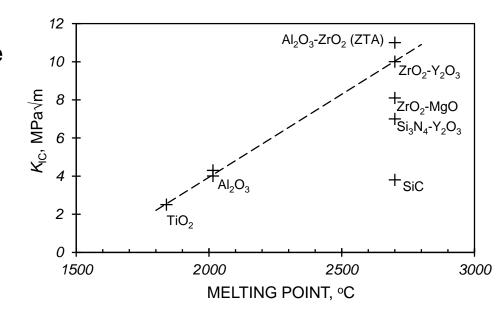

ANDRA evaluation

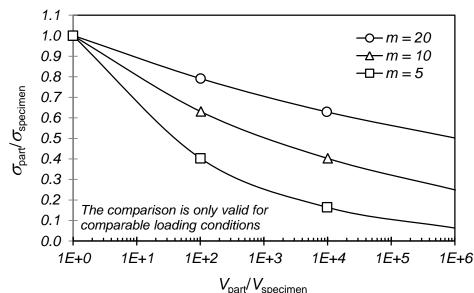

- Main focus on Al₂O₃-SiO₂ HLW canister feasibility
- Half scale body manufacture of this size feasible
- Sealing is still an unresolved problem, requiring significant R&D activity – diffusion bonding is promising except for very high temperatures required

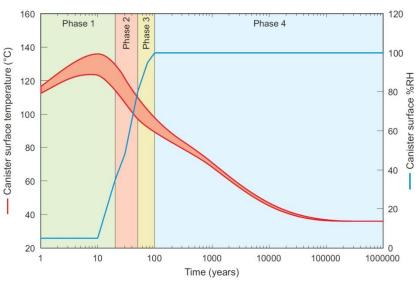

Silicon carbide (SiCeram)

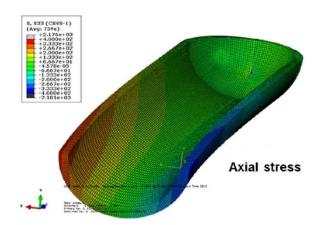

- There are a number of variants: SSiC, SiSiC, RSiC, LPSSiC, Si₄/Si₃N₄
- SSiC exhibits better properties, but prone to high porosity levels (up to 20%), in particular in large sections (could be overcome by Hipping)
- SiSiC low porosity, lower mechanical properties, prone to leaching
- Sealing by laser beam heating with glass ceramic solders (Y₂O₃-Al₂O₃-SiO₂) – currently only feasible for small sections

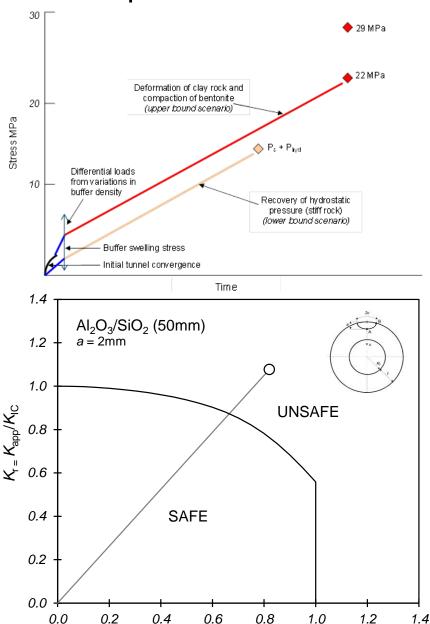


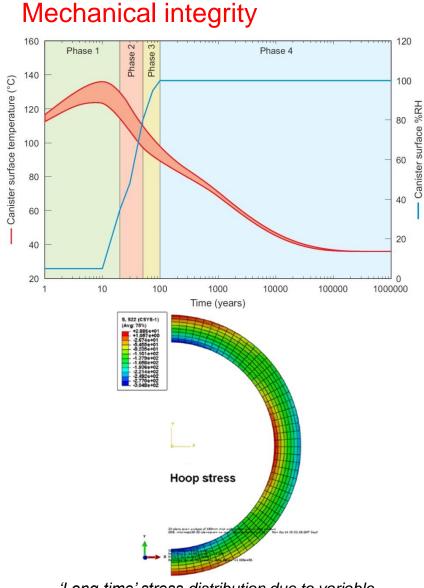

Ceramic solutions for nuclear waste disposal canisters Mechanical property overview

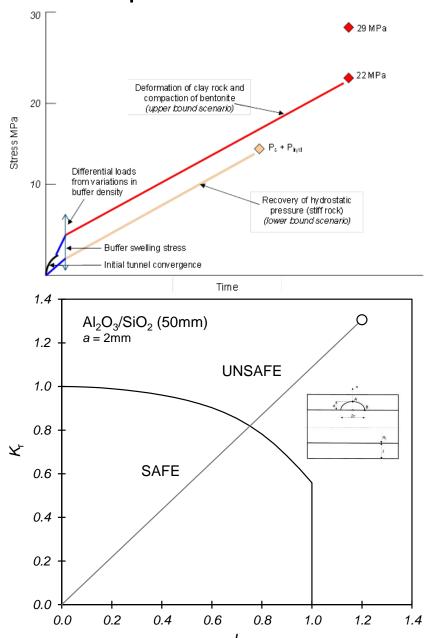



Mechanical Integrity


- The highest toughness ceramics are typically the most refractory (and thereby, the most difficult to sinter)
- The mechanical properties of ceramics are notoriously variable and size dependent
 - Strength and fracture toughness properties determined on small specimens are not representative of larger parts, when Weibull modulus is low
 - \triangleright For ceramics, $m \le 3$ is not unusual
 - \rightarrow 10 < m < 20 is feasible for modern ceramics
 - For metals, m ≥ 100)



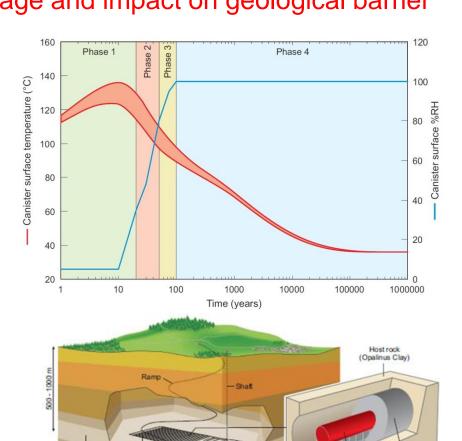



'Short-time' stress distribution due to variable buffer density along, and around, emplaced canister

 $L_{\rm r} = \sigma_{\rm ref}/R_{\rm px}$

'Long-time' stress distribution due to variable bentonite compaction around, emplaced canister

Ceramic solutions for nuclear waste disposal canisters Susceptibility to environmental damage and impact on geological barrier


■ The main advantage of a ceramic solution for nuclear waste disposal canisters is the very high resistance to environmental damage with low impact on the geological barrier

Environmental damage

- 'Short-time' aerobic (dry) phase; 'Long-time' anaerobic (moist) phase
- General corrosion (dissolution/leaching in the case of ceramics), localised corrosion (intergranular leaching), microbial induced corrosion, stress corrosion and hydrogen induced cracking

Impact on geological barrier

- Impact on structure of compacted bentonite backfill and low permeability host rock
- No hydrogen evolution to induce host rock cracking
- No metal ion formation to influence the swelling capacity of the bentonite

Disposal tunnel SF/HLW

Disposal tunnel ILW

SF/HLW

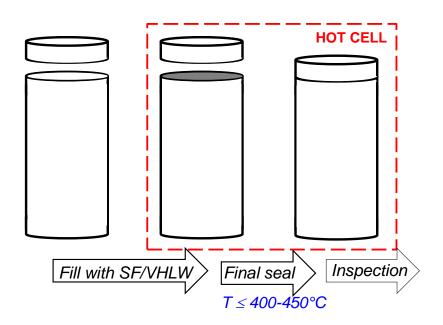
Disposal tunnel with bentonite backfill

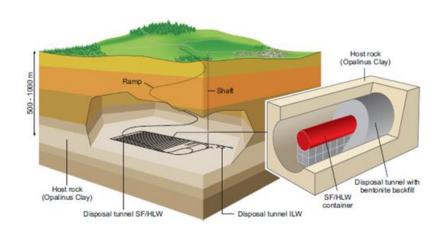
Ceramic solutions for nuclear waste disposal canisters Susceptibility to environmental damage and impact on geological barrier

- Ceramics apparently not susceptible to H₂ generation in the presence of saturated bentonite
- Ceramics can be prone to local radiation damage
 - α-Al₂O₃ may be prone to minor swelling (~1%) to a depth of <1mm at relatively low temperatures
 - MgAl₂O₄ spinel is the most radiation resistant ceramic known, exhibiting zero swelling after neutron irradiation at 400-550°C
 - > A number of pottery materials have also been shown to be immune to γ -radiation
- Ceramics are prone to environmental damage in repository simulation media after significant time periods
 - > But not to the same extent as metals
 - After 2 year autoclave tests in German repository simulated environment, even Al₂O₃ and ZrO₂ are shown to be susceptible to weight gain (solution ingress) or weight loss (dissolution/leaching) and, most importantly,
 - > Intergranular cracking to depths of ≥2mm (which was not observed after 35 day tests)
 - Even Andra predictions based on relatively short duration (≤90 day) tests on Al₂O₃:SiO₂ in Callovian-Oxfordian deep groundwater solutions at 50 and 80°C indicate the requirement for a 1,000 year 9mm 'corrosion' allowance

Manufacturing challenges

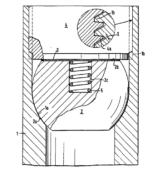
- Manufacturing processes
 - Pressing capacity
 - ➤ To achieve adequate density (porosity levels) in section thicknesses of ≥50mm
 - A single-cylinder HLW canister is about the limit of current capacity
 - Effective handling of large pieces in the green state
 - > The technology would need to be developed
 - Sintering furnace capacity
 - A single-cylinder HLW canister is about the limit of current capacity
- Manufacturing development activity
 - In the absence of a demand for large thick section ceramic pressure vessels from any other industrial sector, the funding of such R&D could only come from the nuclear waste disposal community
 - Current forecast is for ~1900 SF canisters, and for ~300 HLW canisters

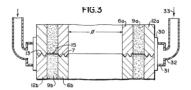


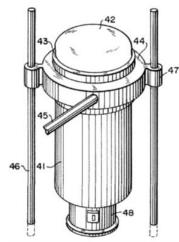

Hipping Plant FCT Hartbearbeitungs GmbH

Ceramic solutions for nuclear waste disposal canisters NAGRA canister review: Canister logistics

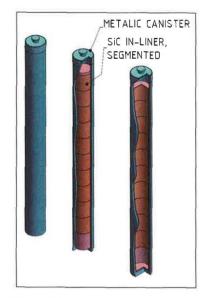
- Disposal of spent fuel (SF)
 - > 5m long x 760mm ID, with $t \le \sim 150$ mm (depending on material solution)
 - Alternative configurations possible, but length is fixed
- Disposal of vitrified high level waste (HLW)
 - > 3m(1.5m) long x 450m ID, with $t \ge 50m$ (depending on material solution)
 - > HLW cylinders are typically 1.34m long x 430mm diam.

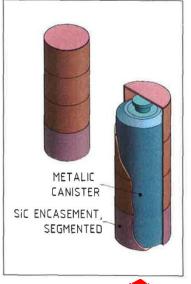

Container sealing solutions


General requirements


- > Secure containment of all matter and the prevention of water penetration
- > Final closure joint must be made and inspected remotely in a hot cell
- During process, temperature of contents is ≤~400°C

- Mechanical joints
- Glass ceramic solders
 - ► For Al₂O₃: Al₂O₃, La₂O₃, ZrO₂, SiO₂-BaO-B₂O₃-A where A is CaO, MgO, SrO, ZnO,
 - For SiC: Y₂O₃-Al₂O₃-SiO₂, CaO-Al₂O₃-SiO₂, MgO-Al₂O₃-SiO₂
- Metallic solders
 - ➤ Ni-Ta, Ni-Ti, Cu-Ag,
- Brazes
- Diffusion bonding
 - > Involves the growth of crystals across a carefully matched interface
 - > Requires the application of mechanical pressure, and a sufficiently high temperature for sintering
 - ➤ Swedish evaluation programme adopted this technique with TiO₂ powder
- Cements
- Sol Gels





Example of NAB-14-90 manufacturer survey: SiCeram

SiCeram

- Published proposals are conceptual
 - SiCeram visited in June 2014 (refer to NAB 14-90)
 - SiCeram does not have the current capability to manufacture full size SSiC SF or HLW canisters without (significant external) investment programme – requirement said to be >100 M€
 - Only FCT Hartbearbeitungs GmbH currently have the potential capability to manufacture a SSiC single-cylinder HLW canister in Europe (and their SSiC contains 0.5 wt% B)
 - Concerns about acceptable density above 50mm
 - Importantly, SiC in-liner solution for SF disposal is not helpful, from the point of view of avoiding hydrogen evolution
- No sealing solution
 - Current TUD laser welding technology (on which SiCeram rely) would need to be significantly upscaled
- No inspection experience of thick walled ceramics
 - Technology would have to be developed

- Ceramic coating of steel provides a potential solution for eliminating/reducing the rate of hydrogen generated by anoxic corrosion in saturated bentonite
 - Only an effective solution if coatings are free of defects and pores to avoid localised corrosion
 - Porosity must be <6% to avoid a continuous path between the metal surface and the external environment</p>
 - Susceptibility to porosity increases with increasing melting point.
 - > A close to matching coating CTE with the steel is required to avoid thermal cracking

Candidate coating solutions

- Al₂O₃, MgAl₂O₄ spinel and Al₂O₃/TiO₂ have been extensively evaluated for HLW steel container applications
 - > Plasma spray, Detonation-gun (DGUN), High velocity oxy-fuel (HVOF)
 - Lower porosity obtained with DGUN and HVOF processes
 - Coating thicknesses of over 1mm evaluated
 - Evidence indicates that greater thicknesses will be required in certain environments
 - 6 years environmental testing in concentrated salts solution at 90°C
 - > But remember Andra recommended 1,000 year 9mm dissolution allowance
- Chemical vapour deposition (CVD) can be used to make dense impervious ceramic coatings of TiC, Al₂O₃ and Y₂O₃
 - Not usually applied to large parts because of high temperatures required to bond refractory ceramics

Ceramic solutions for nuclear waste disposal canisters Concluding remarks

- The main advantages of a ceramic nuclear waste disposal canister solution are:
 - A high resistance to environmental damage, and
 - No gas generation (H₂) during long time emplacement
- Disadvantages include:
 - Low mechanical strength (in tension) and very low fracture toughness
 - Major manufacturing challenges requiring focussed R&D activity to achieve:
 - effective handling of very large pieces in the green state, and
 - ➤ adequate density (porosity levels) in section thicknesses of ≥50mm
 - Limiting press and sintering furnace capacities, worldwide
 - No effective large ceramic container sealing solution
 - in particular with temperature limitation of nuclear waste
- It is possible that the disadvantages could be overcome with appropriate investments in research and infrastructure, but
 - in the absence of a significant demand for large thick section ceramic pressure vessels from any other industrial sector, the funding of such R&D could only come from the nuclear waste disposal community

